A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes.
نویسندگان
چکیده
We present a coarse residue-based computational method to rapidly compute the solution scattering profile from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG representation takes advantage of the intrinsic low-resolution and CG nature of solution scattering data. It allows rapid scattering determination from a large number of conformations that can be extracted from CG simulations to obtain scattering characterization of protein conformations. The method includes several important elements, effective residue structure factors derived from the Protein Data Bank, explicit treatment of water molecules in the hydration layer at the surface of the protein, and an ensemble average of scattering from a variety of appropriate conformations to account for macromolecular flexibility. This simplified method is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrated the applications of this CG method by computing the solution scattering patterns of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with the reliable computational method that we developed, show great potential for a better structural description of multidomain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low.
منابع مشابه
Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.
Small-angle x-ray scattering (SAXS) is a powerful technique widely used to explore conformational states and transitions of biomolecular assemblies in solution. For accurate model reconstruction from SAXS data, one promising approach is to flexibly fit a known high-resolution protein structure to low-resolution SAXS data by computer simulations. This is a highly challenging task due to low info...
متن کاملEvaluation of Some Methods for Preparing Glipizide-β-Cyclodextrin Inclusion Complexes
Glipizide has been found to form inclusion complexes with β-cyclodextrin (β-CD) in solution and in solid state. The present study was undertaken to determine a suitable method for scaling up glipizide-β-CD inclusion complex formation and to evaluate the effect of some parameters on the efficiency of complexation. The solid inclusion complexes of glipizide and β-CD were prepared at a molar...
متن کاملComputational Design of Self-Assembling Cyclic Protein Homo-oligomers
Self-assembling cyclic protein homo-oligomers play important roles in biology, and the ability to generate custom homo-oligomeric structures could enable new approaches to probe biological function. Here we report a general approach to design cyclic homo-oligomers that employs a new residue-pair-transform method to assess the designability of a protein-protein interface. This method is sufficie...
متن کاملStructural characterization of proteins and complexes using small-angle X-ray solution scattering.
Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure...
متن کاملOptical and Nano structural properties of Hematite (α-Fe2O3) nanorods in interaction with Bovine Serum Albumin (BSA) Protein Solution
Hematite (α-Fe2O3) nanorods were synthesized by hydrothermal method using Cetyltrimethylammonium bromide (CTAB) as a surfactant agent. To study optical, nanostructural properties, and to control the morphology and shape of nanorods, 0.025 mol L-1, 0.05 mol L-1 and 0.1 mol L-1 concentration of CTAB were used. Moreover, the effect of interaction between bovine serum albumin (BSA) A9418-5G protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 96 11 شماره
صفحات -
تاریخ انتشار 2009